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Abstract 
 
 
The Basel II Accord requires participating banks to quantify operational risk according 
to a matrix of business lines and event types. Proper modeling of univariate loss 
distributions and dependence structures across those categories of operational losses 
is critical for proper assessment of overall annual operational loss distributions. We 
illustrate our proposed methodology using Loss Data Collection Exercise 2004 (LDCE 
2004) data on operational losses across five loss event types. We estimate a multivariate 
likelihood-based statistical model, which illustrates the benefits and risks of 
using extreme value theory (EVT) in modeling univariate tails of event type loss distributions. 
We find that abandoning EVT leads to unacceptably low estimates of risk 
capital requirements, while indiscriminate use of EVT to all data leads to unacceptably 
high ones. The judicious middle approach is to use EVT where dictated by data, and 
after separating clear outliers that need to be modeled via probabilistic scenario analysis. 
We illustrate all computational steps in estimation of marginal distributions and 
copula with an application to one bank’s data (disguising magnitudes to ensure that 
bank’s anonymity). The methods we use to overcome heretofore unexplored technical 
problems in estimation of codependence across risk types scales easily to larger models, 
encompassing not only operational, but also other types of risks. 
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1 Introduction

Following the Basel II Accord’s requirement that banks should quantify their operational
risk exposure in a systematic statistical manner, the Basel Committee’s Risk Management
Group has found that banks allocated, on average, approximately 15 percent of their capital
for operational risk, c.f. [20, p. 37]. Moreover, recent studies have found instances wherein
the capital charges for operational risk exceed those for market risk, c.f. [6].

In this regard, the the Basel II Accord encourages banks to perform operational risk
quantification, and to design risk management techniques, at the most appropriate “gran-
ular” level. More granular units of measure help better to identify risk factors, supporting
risk management efforts and improving the measurement of operational risk for capital
adequacy calculations.

The new Accord provided categories for various types of operational risks along two
dimensions: event types (e.g., fraud vs. execution) as well as business lines (e.g., corporate
finance vs. retail banking). To date, it appears that most banks have not conducted their
statistical operational risk quantification exercises at this level of disaggregation. This is
likely due, in part, to unavailability of data, but may also in part be due to unavailability
of sophisticated and yet easily implementable statistical procedures for making full use of
the “granular” approach.

In this paper, we aim to make two main statistical contributions that may assist banks
in making full use of the disaggregation approach to operational risk quantification, with
an eye to eventual development of appropriate risk management techniques beyond com-
putation of capital charges. Toward that end, we focus on the modeling of codependence
between operational risks in various categories. We illustrate the inadequacy of simple
linear correlation frameworks, and propose and illustrate a simple procedure for modeling
the full codependence between operational losses for different event types.

In this regard, we tackle a fundamental technical problem for estimation of codepen-
dence of operational losses: the asynchronicity of loss arrival processes. We solve this
problem, and simplify the analysis considerably while maintaining granularity and suffi-
cient estimation precision, by aggregating losses of each given category over a short period
of time. That provides us with continuous distributions for losses in the different cate-
gories (event types in our case), for which the full dependence structure can be modeled
through estimation of univariate marginal loss distributions for each category, together
with estimation of an appropriate copula.

The estimated dependence structure, and resulting capital charge estimation, depend
not only on the use of copula, but also on the choices of marginal loss distributions for
losses in various categories. In this regard, preliminary studies to date (c.f. [10]) have cast
doubt on the use of extreme value theory (EVT) to model “fat tails” of univariate loss
distributions. Those studies have found that the use of EVT yields excessively and unrea-
sonably large capital charges, while the use of thin-tailed distributions yields unreasonably
small ones.
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In our multivariate statistical analysis of operational losses for five event types, we
compare our results from different techniques. The best alternative, it appears, is to
consider three types of losses: (1) regular losses (for which many thin tailed distribution,
such as lognormal or gamma, may be fitted), (2) extreme losses (for which a fat tailed
distribution, in particular generalized Pareto, may be fitted), and (3) outliers (extremely
rare and large losses that need to be modeled subjectively, perhaps using Bayesian methods
for elicitation of beliefs from experts, c.f. [15, 16]). In our analysis, we use maximum
likelihood estimation for the univariate loss distributions (including thresholds for EVT,
where appropriate), as well as copula. Extension to full Bayesian inference, especially if few
observations are available, is thus straightforward from our likelihood-based framework.

Thus, our proposed framework aims to satisfy the Basel II Accord’s requirements by (1)
conducting the analysis at a disaggregated level, (2) using formal statistical methods for
estimation of multivariate distributions, allowing for very general codependence structures,
and (3) allowing for “fat tails” of some loss distributions. The statistical framework for
our analysis is discussed in Section 2. Specific parametric models that are used in our data
analysis are discussed in Section 3. Results of our analysis of data from one bank (after
disguising that bank’s data to preserve its anonymity) are shown in Section 4, and Section
5 concludes the paper.

2 Statistical Framework

One of the most important aspects of the Basel II Accord’s treatment of operational risk is
the emphasis on recognizing the sources and categories of risks being quantified. Quantifi-
cation of risks by source and category would then lend itself more easily to risk estimation,
including the use of combined internal and relevant external data, and scenario analysis. It
would also aid in risk management, by informing the design of diversification, insurance, or
hedging mechanisms that target specific risk types and risk sources, integrating the effects
of internal controls in risk quantification and measurement.

Section 2.1 will provide a brief summary of the regulatory framework that focuses on
defining appropriate units of measurement to quantify operational losses at a disaggregated
level. To determine a bank’s regulatory capital charge for operational risk, we need to
reaggregate estimated loss distributions across the various units of measurement to obtain
an overall estimated operational loss distribution. This aggregation process requires the
use of an appropriate model of the statistical dependence structure across our units of
measurement. In Section 3, we shall discuss the generally accepted statistical methodology
that we use in this paper: modeling the multivariate distribution of losses across units of
measurement by first modeling the marginal distributions for each unit, and then estimating
an appropriate copula function to measure codependence.

As we shall discuss in Section 2.2, the estimation of copula – or any other means of
capturing codependence of losses across units of measurement – requires matching observed
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losses temporally. This requires the definition of a unit of time over which the analysis
will be conducted. If we choose a fine unit of time, such as a day, we will need to use a
frequency-and-severity framework for estimating the distribution of losses. However, with
different numbers of losses across a unit of time, one would only be able to model the
dependence structure for the frequency process, but not for severities (since the latter are
not be matched). We present a solution to this problem by aggregating losses across a unit
of time (weekly) that is sufficiently coarse to avoid the problem of very small numbers of
losses in any period, while being sufficiently fine to give us a sufficiently large data sample
for analysis.

2.1 Unit of Measurement:

The Basel II Accord requires thinking about operational risk by units of measurement,
commonly labeled categories, classes or cells. The latter terminology comes from envision-
ing a table of possible categories of loss events (event types) in different banking operations
(business lines). As summarized in Table 1, the new Accord listed four sources of opera-
tional risk: people, processes, systems, and external. However, the sources are used mainly
as heuristics for thinking of the categories of operational losses that a bank may experience.
Those categories were broken into seven event types within each of eight business lines, as
shown in Table 1. Each combination of event type and business line is then viewed as a
“cell” in a matrix of disaggregated operational losses.

Table 1: Basel II Operational Risk Factors, Event Types, and Business Lines

Factors Event Types Business Lines
(Risk sources) (Classification of risk types) (Refinement)

1. Internal fraud 1. Corporate finance
2. External fraud 2. Trading and sales

1. People 3. Empl. practices and workplace safety 3. Retail banking
2. Processes 4. Clients, products and business practices 4. Commercial banking
3. Systems 5. Damage to physical assets 5. Payment and settlements
4. External 6. Business disruption and system failures 6. Agency services

7. Exec. delivery and process management 7. Asset management
8. Retail brokerage

Of course, different event types and business lines may have varying significance for
different banks. For instance, a processing bank would have operational risks dominated in
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the three non-credit related business lines 5,6 and 7, c.f. [7]. Focusing on the relevant cells
for each bank would help banks and regulators in determining the level of operational risk
exposure and proper measures to manage it. Thus, we would like – ideally – to perform the
analysis at the most granular level possible, using the matrix of event types and business
lines as a point of departure. It is in this regard that Basel II states in paragraph 666(b):
“The bank’s internal operational risk measurement system must be closely integrated into
the day-to-day risk management processes of the bank. Its output must be an integral part
of the process of monitoring and controlling the bank’s operational risk profile.” In other
words, if risk measurement takes place at a coarse level, it will be mainly a compliance
exercise. Hence, for operational risk measurement to be relevant to how the bank is actually
run, it needs to take place at a more granular level.

Note, however, that all banks can disaggregate their operational losses based on event
types, but they need not be bound by conducting the analysis for the eight listed business
lines, since they may not practice in those lines, or they may practice in areas that cannot
be classified according to the standard list. In fact, for most banks in LDCE 2004, there
were no reported losses in certain business lines, and many event-type/business-line cells
had no reported losses for significant portions of the dataset. This justifies our focus on
event types for the remainder of this paper, whereby we shall conduct the analysis on losses
by event type, aggregated across business lines. In addition, event type segregation enables
banks to see the root causes of losses while segregation by only business lines does not.
By event type segregation, banks can link the losses with risk sources shown in Table 1,
thus informing them regarding how to manage the risk. On the other hand, if the units
of measurement are analyzed only by business line, the comingling of losses from different
sources would make the risk management exercise more difficult. We are aware that in
the event of lack of data, some banks prefer first disaggregation by business lines, since
business lines thus would have their own capital estimates directly. Ultimately, the method
we develop is applicable to both event type and business line disaggregation. To illustrate
our method, we chose to start with analysis by event type in order to draw attention to its
potential role in integration of risk measurement and management.

2.2 Dependence structure and a technical problem

Another major advantage of disaggregating operational losses by category is the resulting
ability to estimate the dependence structure across those loss categories (for which we shall
focus on event types, as discussed previously). One can easily see how codependence across
loss types can be driven by the primary risk sources that contribute to those losses. For
instance, the risk source “people” contributes mainly to event types 1, 3 and 7, “processes”
contribute primarily to event types 4 and 7, “systems” contribute mainly to event type 6,
and “external” contributes mainly to event types 2 and 5.

It would be excessively pessimistic to compute operational risk capital by computing
the 99.9% value at risk (VaR) for each event type, and then to add those up. That would
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be assuming perfect correlation across the various operational loss types. Instead, one
can estimate a dependence structure across the loss types, and use the estimated joint
distribution of operational losses to simulate or calculate analytically the 99.9% aggregate
annual VaR to obtain the regulatory capital charge. The difference between the capital
charge assuming perfect correlation and that using an estimated dependence structure is
commonly called a “diversification effect” (not all extreme losses are likely to occur at
the same time). Basel II recognizes such diversification effects, but requires disclosure of
the statistical methods used to estimate them (Basel II paragraph 669(d)), for which it
provides very little guidance at this stage.

As we shall discuss in Section 3, the generally accepted paradigm for estimation of the
joint distribution of losses is estimation of marginal distributions for various loss types, and
then using those estimated marginals to estimate a copula distribution, which completes the
characterization of a joint distribution. We shall leave technical details of this procedure for
Section 3, and operational details of how we implement it for Section 4. In this section, we
need to discuss a conceptual problem that complicates the implementation of this standard
procedure, which is borrowed from market risk quantification frameworks, for operational
risk measurement.

The model of choice in risk management in recent years has been the loss distribution
approach (LDA), adopted from the insurance industry. The LDA framework breaks the
distribution of losses into two components: a discrete distribution for frequency of loss
occurrence, and a continuous distribution for severity of loss conditional on its occurrence.
Mathematically, the aggregate loss (AL) may be written as:

AL =
N∑

n=1

Xn = X1 + ... + XN

where N is a random number measuring frequency of losses and Xn are loss severities.
While this is a useful model for univariate loss distributions, it is not at all clear how one
would estimate codependence for multivariate losses within this framework.

One can allow for codependence of frequencies of loss occurrences per time unit (daily,
weekly, etc.) by estimating a multivariate discrete distribution for frequencies (e.g. negative
multinomial, also known as multivariate negative binomial).1 However, codependence of
severities is all but impossible to estimate: Imagine if we had no losses of one type, and
two of another in one period, and the opposite in another, how would one even calculate
a simple correlation of loss magnitudes? In fact unless losses are matched together in
some manner, it appears impossible to estimate a joint distribution of their magnitudes,
either directly with a multivariate parametric model, or indirectly by estimating marginal
distributions and copula.

1For instance, [13, 19] correlate frequencies of loss occurrence, but not severities. This approach has
very limited usefulness, since codependence of loss severities (especially for large losses, as we shall discuss
in Section 4) is much more important than codependence of loss occurrences. Moreover, most multivariate
discrete distributions put limits on permissible codependence, (c.f. [14]).
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One solution to overcome the synchronization problem of operational losses is to ag-
gregate losses of each type over a unit of time. In this manner, aggregate losses of each
type for that unit of time are synchronized with aggregate losses of each other type for the
same unit, and a joint distribution for those losses can be estimated with a multivariate
distribution directly or indirectly. As discussed in Section 4, aggregating the daily data
reported in LDCE 2004 at the weekly level provided us with sufficient numbers of observa-
tions for each loss type (196 observations over the 45-month sample period), while avoiding
the technical problem of asynchronicity of losses.2

3 Statistical Methods

Having ruled out the use of actuarial loss distribution methods, our multivariate statistical
modeling of the joint distribution of losses across various event types requires only two
components: estimation of univariate loss distributions, and estimation of a copula func-
tion. This follows from the well known Sklar’s theorem, c.f. [21, 18], which states that any
multivariate distribution function F : Rd → [0, 1] can be fully characterized by its margin
CDFs F1, ..., Fd (each Fi : R → [0, 1], i = 1, . . . , d) and copula function CF : [0, 1]d → [0, 1],
whereby CF is a multivariate CDF with uniform margins on [0,1] . Thus,

F (x) = CF

(
F1(x1), ..., Fd(xd)

)
, x ∈ Rd

The CDF CF is called a copula for F . If the margins Fi, i = 1, . . . , d, are all continuous,
the copula CF is uniquely defined by:

CF (u) = F
(
F−1

1 (u1), ..., F−1
d (ud)

)
, u ∈ [0, 1]d

In our analysis, we shall use the t-copula, which has been most preferred in risk manage-
ment, since it allows for fat tails and simultaneous large observations with small degrees of
freedom, while nesting Gaussian-like thin tails for large degrees of freedom (c.f. [12] and
[8]). The t-copula has two parameters: degrees of freedom ν, and (Spearman) correlation
matrix P . It is defined by:

Ct
ν,P (u) = tν,P (t−1

ν (u1), ..., t−1
ν (ud)), u ∈ [0, 1]d,

where tν(.) is univariate student t cdf with ν degrees of freedom, and tν,P (.) is the multi-
variate density student t cdf with ν degrees of freedom and Spearman correlation matrix
P , c.f. [18, p.151]. Thus, fatter tails and higher tail dependence can be captured with low
values of ν, and vice versa.

It thus remains to define our choice of univariate marginal distributions of operational
losses for various event types. Previous studies have shown that if a single distribution

2Note that the same considerations apply equally to multivariate credit risk measurement.
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is fitted to operational losses, capital charge estimates depend critically on the choice of
distribution, c.f. [10]. On the other hand, if one distribution is fitted to loss severities up
to some threshold, and extreme value theory (EVT) is invoked to fit a generalized Pareto
distribution to exceedances above that threshold, then the choice of the first distribution
is relatively immaterial, c.f. [6], except to the extent that it may influence threshold
choice. In this regard, the relevant component of extreme value theory is the result that
the distribution of exceedances above a threshold becomes arbitrarily well approximated by
the GPD as threshold value goes to infinity, c.f. [11] and [1]. The GPD cdf for exceedances
x (equal to observed value less threshold) is defined by two parameters τ and γ as follows:

GPDγ,τ (x) =


1− (1 + γx

τ )−1/γ if γ 6= 0,

1− exp(−x/τ) if γ = 0,

where τ and γ are scale and shape parameters, respectively. For γ > 0, the distribution
is heavy tailed (i.e. the density value declines slower than exponential), and tail heaviness
increases with γ.

The final remaining issue is choice of the threshold. That choice is subject to a classical
bias-variance tradeoff: As threshold value rises, the GPD approximation becomes more
accurate and bias is reduced in estimates of γ and τ . However, that is obtained at the
expense of higher variance of those estimates, as the number of observations above the
threshold declines. Conversely, as the threshold declines, estimation variance falls, but
at the expense of rising bias (unless the distribution is in fact GPD). Various methods
have been devised to approach optimality in this bias-variance tradeoff, including ocular
inspection of estimates of γ for various threshold values, as well as more formal statistical
procedures, c.f. [5]. As explained in Section 4, we decided to invoke the likelihood principle
by maximizing overall likelihood for the dataset, using a lognormal distribution fit for losses
below the threshold and GPD distribution fit for exceedances above that threshold. This
approach was also used in Bayesian univariate analysis of loss distributions, e.g. [2]. See
subsection 4.3 for more details on our procedure to maximize likelihood over all parameters,
including the threshold choice.

4 Data Analysis and Results

We now turn to the specific empirical investigation of operational risk in one of the par-
ticipating banks in LDCE 2004, c.f. [17]. We have already discussed one of the intrinsic
data limitations in Section 2, namely that operational losses of different types are not
synchronized, and hence the dependence structure of their magnitudes cannot be modeled
directly in the collected data. As discussed in that section, we solve that technical problem
by aggregating losses of each type at the weekly level. This gives us 196 observations for
each cell in the operational risk categories matrix, each cell corresponding to a particular
business line and event type.
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However, two data limitations force us also to limit the number of units of measurement.
The first limitation forces us to exclude event types 5 (damage to physical assets) and 6
(business disruptions and system failures). The number of reported losses in those two
event types are very small relative to the other five. Fortunately, the dollar magnitudes of
losses in those event types are also very small relative to losses of other types (e.g., fraud or
legal losses), and hence we can exclude those statistically problematic event types 5 and 6
from the analysis without affecting the estimated distribution of overall operational losses
substantially.

The second data limitation hinders our ability to perform the analysis at the level of
each cell in the risk categories matrix (i.e., by event types for each business line). As
discussed previously, many of the cells are very sparsely populated both at the daily level,
and also after aggregation to the weekly level. Consequently, we have decided to conduct
our analysis for aggregated weekly losses over all business lines for each of the remaining
five event types: ET1 (internal fraud), ET2 (external fraud), ET3 (employment practices
and workplace safety), ET4 (clients, products, and business practices) and ET7 (execution,
delivery and process management). This choice of aggregation also has the advantage of
being robust, since all banks report losses for the same event types, but each defines its
own relevant list of business lines.

4.1 Exploratory Data Analysis

Thus, our departure point for data analysis is the data set comprised of 196 weekly sums of
operational losses for each of five event types, aggregated over all business lines. A scatter
plot of this raw series is shown in Figure 1. The bottom triangular part of the figure shows
scatter plots of weekly loss magnitudes for each pair of event types. The top part of the
figure shows linear correlations between each pair. The event types for each cell in the
upper and lower triangles is identified by the diagonal labels. We can clearly see that few
observations can dominate the linear correlation measure of codependence of those series.
For instance, the largest linear correlation (0.47) is that between event types 2 and 3.
However, it is clear from the scatter plot of those two types that one week with large losses
in both event types is driving that high correlation. In later analyses in this section, we
shall see correlation scatter plots corresponding to Spearman correlations, which we use in
copula estimation, and which are robust to such high leverage observations.

The correlation structure for the five event types suggests that there is statistically
significant correlation between losses. In Table 2, we report the results of pairwise tests of
uncorrelatedness of the event type losses.

For now, we present another graphical representation of the codependence structure
of the raw data to emphasize the importance of thinking about codependence of extreme
events, and not only about linear correlation.
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Figure 1: Raw Data Scatterplot and Correlations

Table 2: Pearson’s Product-moment Correlations and Tests of Uncorrelatedness

Event Types Pearson Corr. t-statistic d.f. p-value
E1, E2 -0.008 -0.106 194 0.915
E1, E3 0.139 1.952 194 0.052
E1, E4 0.204 2.900 194 0.004
E1, E7 0.046 0.648 194 0.518
E2, E3 0.469 7.389 194 4 E-12
E2, E4 0.385 5.814 194 2 E-08
E2, E7 0.155 2.179 194 0.031
E3, E4 0.259 3.733 194 0.0002
E3, E7 0.143 2.014 194 0.045
E4, E7 0.103 1.446 194 0.150

10



0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Chibar(ET1,ET2)

Quantile

C
hi

 B
ar

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Chibar(ET1,ET3)

Quantile

C
hi

 B
ar

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Chibar(ET1,ET4)

Quantile

C
hi

 B
ar

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Chibar(ET1,ET7)

Quantile

C
hi

 B
ar

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Chibar(ET2,ET3)

Quantile

C
hi

 B
ar

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Chibar(ET2,ET4)

Quantile

C
hi

 B
ar

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Chibar(ET2,ET7)

Quantile

C
hi

 B
ar

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Chibar(ET3,ET4)

Quantile

C
hi

 B
ar

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Chibar(ET3,ET7)

Quantile

C
hi

 B
ar

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Chibar(ET4,ET7)

Quantile

C
hi

 B
ar

Figure 2: Dependence Structure at Various Quantiles
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In Figure 2, we show χ̄ plots for the bivariate samples of each pair of event types.
The function χ̄(q) ∈ [−1, 1] is a measure of codependence calculated at each quantile q as
follows, c.f. [3, 4]:

χ̄(q) =
2 log(1− q)

log(Pr{FX(x) > q, FY (y) > q})
− 1,

where FX and FY are the marginal distribution functions for variables X and Y respec-
tively. Hence χ̄(q) measures the tendency for X to exceed the quantile q at the same time
that Y exceeds q. Looking at the χ̄ plot for event types ET2 and ET3, we can see that
there is virtually no codependence at most quantiles, with the notable exception of the
very highest 99th percentile, as expected from our visual inspection of the scatter plots in
Figure 1. Similar patterns can be seen for event pairs (ET2, ET4) and (ET3, ET4).

In figure 3, we perform one final visual inspection of the data to assess the need
for employing extreme value theory methods. In that figure, we show mean excess and
exponential-quantile-quantile plots (QQ-plots) for the five event types. The upward slop-
ing mean excesses and concave QQ-plots suggest the need for EVT treatment, at least for
event types 2, 4, and 7, as we shall see in our likelihood-based statistical analysis below.
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Figure 3: Are operational losses heavy tailed?
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4.2 Data Analysis without Extreme Value Theory

We begin our analysis by ignoring the fat tails of operational loss distributions – perhaps
a straw-man model given the clear fat tails shown in Figure 3, but a good benchmark
nonetheless. In Figures 4-8, we show density plots and QQ-plots for fitted lognormal
distributions of all five series. For event types 1 and 3, we also plot the marginal likelihood
function over thresholds, which we shall discuss in detail in subsection 4.3. The density
and QQ-plots show good fits of the lognormal distribution to the bulk of loss observations,
but also the distribution’s inability to capture very large observed losses.
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Figure 4: Lognormal Fit for Event Type 1
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Figure 6: Lognormal Fit for Event Type 3
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Figure 7: Lognormal Fit for Event Type 4
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Since the lognormal density model fits most observations very well, as seen in Figures 4-
8, we shall continue to use that model with the addition of the generalized Pareto density
(GPD) model for “tail” losses beyond some threshold, as discussed in Section 3. For
now, we proceed with the analysis without any allowance for “fat tails”. In Figure 9,
we show a scatter plot of the data transformed through the estimated lognormal CDF
marginals for the five event types. The correlations shown in the upper triangle part
of the Figure correspond to the Spearman correlations between those variables, equal to
ρS (x1, x2) = ρ(F1(x1), F2(x2)), under the lognormal model for marginal CDFs. Comparing
those correlations to the linear correlations (especially, e.g. for the pair ET2 and ET3) in
Figure 1 illustrates two important points: (1) that linear correlation can be very misleading
in the presence of high leverage data points of simultaneous large losses, and (2) that the
lognormal model may in fact be excessively indifferent to such simultaneous tail events.
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Figure 9: Transformed Data Scatterplot and Correlations: All Lognormal Model

Using the transformed data in Figure 9, we fit a 5-dimensional t-copula, which we
then use to simulate 100,000 random years, each containing 52 random weekly losses from
the estimated lognormal marginal distributions and t-copula with the shown Spearman
correlations. The resulting distribution of annual operational losses is shown in Figure 10.
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To address the magnitudes of estimated annual loss percentiles, while ensuring the
bank’s anonymity, we have multiplied (or divided) annual loss simulations by a scalar
factor, so that $1 billion corresponds to the bank’s own internal estimate of operational
loss capital for 2004 (calculated as VaR at the 99.9% level). By comparison to that number,
it is clear that the simulated VaR99.9% of $327 million shown in Figure 10 is very low. Of
course, that is not surprising, as the estimated lognormal marginal distributions have thin
tails, and therefore undersample in the region of high losses of all types. Indeed, due to
that underrepresentation of large and simultaneous large operational losses, the estimated
degrees of freedom of the t-copula in our model was very large (at 108), suggesting that
the estimated copula itself essentially had Gaussian-thin tails.Histogram of Simulated Annual Losses with VaR
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Figure 10: The Bottom Line Distribution– All Lognormal Model
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4.3 Lognormal Bodies and GPD Tails

The next model we consider has been – to date – the workhorse of risk measurement
estimation: a mixture of lognormal distribution (fitted for small or moderate losses) and
generalized Pareto distribution (fitted for large or extreme losses), c.f. [9]. Instead of using
ad hoc ocular methods, such as inspection of Hill plots with various excluded exceedances
to determine the threshold beyond which the GPD model is fit, we use a full maximum
likelihood procedure with five parameters (log-mean and log-standard deviation for the
lognormal distribution, a quantile for the threshold, and shape and dispersion parameters
for the GPD distribution). This is also the combined likelihood function used in [2].

Since the likelihood function is not smooth in the threshold percentile (it is asymptot-
ically, but for finite samples, it jumps at percentiles corresponding to adding or removing
an observation from the subsample), we perform a grid search on the threshold quantile.
For each point on that grid, we maximize the overall likelihood function using the log-
normal density up to the corresponding threshold, and the normalized GPD density for
exceedances (where the normalization is 1 less the lognormal CDF of the threshold, so that
the likelihood function integrates to unity).

In other words, for each quantile λ and corresponding threshold Tλ, the likelihood
function at observation x is:

L(x|µ, σ, λ, γ, τ) =


fLN (x|µ, σ) if x ≤ Tλ,

(1− FLN (Tλ|µ, σ))× fGPD(x− Tλ|γ, τ) if x > Tλ,

where fLN (.|.) and FLN (.|.) are, respectively, the lognormal pdf and cdf evaluated at the
stated data point and parameter values, and fGPD is the pdf of the generalized Pareto cdf
discussed in Section 3.

As customary, we maximize likelihood by minimizing negative log likelihood. Negative
log likelihood for each λ is nll(x|µ, σ, λ, γ, τ) = −

∑n
i=1 log L(xi|µ, σ, λ, γ, τ), which we

minimize over (µ, σ, γ, τ), and then choose the overall minimum over (µ, σ, λ, γ, τ). For
event types 1 and 3, the marginal negative log likelihood at each threshold quantile (i.e.,
the minimized negative log likelihood value over µ, σ, γ, and τ with that threshold quantile
fixed) are shown at the top of Figures 4 and 6, respectively. For event types 2, 4, and 7,
those marginal negative log likelihood functions are shown at the tops of Figures 11, 12,
and 13, respectively.

Given the extremely high threshold quantiles (above 95%) at which negative log likeli-
hood is minimized for event types 1 and 3, there are insufficient numbers of exceedances to
fit GPD models for those event types (and if we fit GPD models to those few observations,
we obtain γ̂ < 0, indicating thin tails). Hence, we maintain the lognormal distribution
for the entire samples of those two event types. For event types 2, 4, and 7, the max-
imum likelihood estimates of threshold quantiles are 20%, 83.5%, and 28%, respectively
(for anonymity purposes, we do not report actual threshold dollar values, lest the bank be
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easily identified). In other words, the likelihood function chooses fat tailed distributions for
the bulk of types 2 and 7 operational losses. Interestingly, those two types of operational
losses are similar to losses in the insurance industry, where the entire distribution above
a relatively-low threshold (corresponding to policy deductible) is commonly modeled by
fat-tailed distributions: Event type 2 is external fraud, which is one of the major sources
of risk to insurance companies, and event type 7 relates to internal processes which are
similar across various financial institutions.
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Figure 11: Lognormal Body & GPD Tail Fit for Event Type 2
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Figure 12: Lognormal Body & GPD Tail Fit for Event Type 4
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Figure 13: Lognormal Body & GPD Tail Fit for Event Type 7
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Figure 14 contains a scatter plot and Spearman correlations corresponding to the mar-
gins modeled by mixtures of lognormals and GPDs. In comparison to Figures 1 and 9,
we can see that the significant correlations (e.g. between types 2 and 4) are once again
restored once simultaneous tail events are recognized. On the other hand, the correlation
between event types 2 and 3 is now somewhere between the very high value of the linear
correlation in Figure 1 and the extremely low Spearman correlation of Figure 9. That is in
large part driven by the fact that we do not allow for a fat tail in type 3, since the likelihood
function favors modeling the overwhelming majority of observations under the lognormal
distribution. We shall return to this issue with more insights in the next subsection, when
we allow for excluding outliers in the main statistical analysis.
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Figure 14: Scatterplot and Correlations: Lognormal Bodies & GPD Tails

We now proceed to simulate random sets of 52 weeks for 100,000 hypothetical years,
using the estimated weekly distributions of the five types and a fitted t-copula using the
Spearman correlations based on those marginal estimates. For this model, the estimated t-
copula has only 5 degrees of freedom, thus accommodating fat tails and simultaneous large
loss occurrences. The resulting distribution of annual operational risk losses (aggregated
across all five event types) is shown in Figure 15. In this Figure, we have also normalized
the annual losses so that $1 billion corresponds to this bank’s own internal estimate of the
annual losses’ VaR99.9% for 2004. A VaR99.9% of $28.407 billion is clearly excessive.
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Histogram of Simulated Annual Losses with VaR
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Figure 15: The Bottom Line: Lognormal Bodies & GPD Tails

We suspect that this extremely high VaR figure stems from the existence of abnormally
high losses for some event types. In four of our 196 weeks, we observed such “outliers,”
which reached as high as 7.7 log-standard deviations above the log-mean of weekly losses for
two event types. Hence, our final analysis will be conducted excluding those four “outlier”
weeks, for which we recommend the use of probabilistic models of rare events, as suggested
in [15, 16]. Note, moreover, that the dependence structure in our data is not adversely
affected by excluding those four outlier weeks, as shown in Figure 16 (see, for instance, the
continued co-dependence at high quantiles for ET2 with ET3 and ET4).

26



0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Chibar(ET1,ET2)

Quantile

C
hi

 B
ar

0.0 0.2 0.4 0.6 0.8 1.0
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

Chibar(ET1,ET3)

Quantile

C
hi

 B
ar

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Chibar(ET1,ET4)

Quantile

C
hi

 B
ar

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Chibar(ET1,ET7)

Quantile

C
hi

 B
ar

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Chibar(ET2,ET3)

Quantile

C
hi

 B
ar

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Chibar(ET2,ET4)

Quantile

C
hi

 B
ar

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Chibar(ET2,ET7)

Quantile

C
hi

 B
ar

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Chibar(ET3,ET4)

Quantile

C
hi

 B
ar

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Chibar(ET3,ET7)

Quantile

C
hi

 B
ar

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Chibar(ET4,ET7)

Quantile

C
hi

 B
ar

Figure 16: Dependence Structure at Various Quantiles, outliers excluded
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4.4 Bodies, Tails, and Separate Treatment of Outliers

Excluding the outliers only affects our maximum likelihood estimates modestly, but has
significant effects on the estimated capital charge. The correlation tests for raw data with
excluded outliers are reported in Table 3. Interestingly, the removal of four weeks that
contained outliers eliminated most pairwise correlations between weekly losses of various
event types, with the exception of the Pearson correlation between Events 4 and 7 which
becomes significant at the 10% level after elimination of the outliers. For this particular
data set, that would suggest that analysis of the data without the outliers may be conducted
under the assumption of uncorrelatedness. The reverse side of this coin is that the separate
scenario analysis of the outliers would require careful calibration of correlatedness, both
in data analysis, and when eliciting priors from experts. However, hasty generalization
from the specifics of one bank’s data set is not warranted. Hence, one should allow for
correlatedness of the bodies and tails of distributions – using copula as we do in this paper,
or using some other statistical methodology – and also allow for correlatedness of extremely
infrequent and large events, which we call outliers. If no correlation exists, then allowing
for it will not affect the analysis adversely, but the reverse is not true, since diversification
effects can be significant as we show in the conclusion.

Table 3: Pearson’s Product-moment Correlations and Tests of Uncorrelatedness – raw data
without outliers

Event Types Pearson Corr. t-statistic d.f. p-value
E1, E2 -0.054 -0.747 190 0.456
E1, E3 -0.012 -0.162 190 0.872
E1, E4 -0.026 -0.353 190 0.872
E1, E7 -0.021 -0.293 190 0.770
E2, E3 -0.008 -0.114 190 0.910
E2, E4 0.060 -0.082 190 0.406
E2, E7 -0.019 -0.263 190 0.793
E3, E4 -0.042 -0.579 190 0.563
E3, E7 0.048 0.658 190 0.511
E4, E7 0.125 1.741 190 0.03

The estimated lognormal parameters for types 1 and 3 are only affected in the second
decimal place. The new estimates of bodies and tails for types 2, 4, and 7 are shown in
Figures 17, 18, and 19, respectively. The main effects are that the threshold quantile is
lower for event type 4 and higher for 7, and the shape parameter for event type 4 tail GPD
is significantly lower. The latter effect is primarily responsible for the different capital
charge that we estimate with this model.
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Figure 17: Lognormal Body & GPD Tail Fit for Event Type 2, Outliers Excluded
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Figure 18: Lognormal Body & GPD Tail Fit for Event Type 4, Outliers Excluded
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Figure 19: Lognormal Body & GPD Tail Fit for Event Type 7, Outliers Excluded
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As we can see in Figure 20, the Spearman correlations estimated with this model (using
EVT, but excluding outliers for future probabilistic scenario analysis) differ from previous
estimates in significant ways. Most notable is the high Spearman correlation between event
types 4 and 7, which is higher than those observed in either of the previous models.
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Figure 20: Scatterplot: Lognormal Bodies & GPD Tails, Outliers Excluded

The elimination of outliers also has the effect of moderating quantiles of the estimated
distribution of annual operational losses. Figure 21 shows that simulated distribution
based on the estimated weekly marginals and t-copula after the four outlier weeks were
excluded. Recall that the simulated annual losses were normalized so that the internal
estimate of VaR99.9% for this bank was $1 billion. The hybrid model, which incorporates
EVT but excluded outliers, produces an estimated VaR99.9% of $551 million, which leaves
a reasonable cushion for probabilistic scenario analysis of extremely rare and extremely
large outliers. The results of our three models are thus summarized in Table 4.

4.4.1 Adjusting VaR for outliers

Of course, when we exclude outliers from our main statistical analysis, we must perform a
separate statistical analysis of the outlier generation process, and the distribution of outliers
conditional on their occurrence. Due to the rareness of outliers, it is ideal to use a Bayesian
analysis, with priors on occurrence, severity, and co-dependence of outliers elicited from
experts at the relevant banks. The full treatment of this procedure is a subject for future
research. A back of the envelope calculation using only the observations we have would
suggest an adjustment to the VaR that is of an appropriate magnitude. With outliers
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Table 4: Value at Risks and Expected Shortfalls (in $ US billions, using copula)

Model VaR95% VaR99% VaR99.9% ES95% ES99% ES99.9%

All data, lognormal only 0.160 0.208 0.327 0.192 0.259 0.424
All data, with EVT 2.795 6.561 28.407 7.478 21.855 119.330

Without 3 outliers, with EVT 0.481 0.731 1.721 0.678 1.148 2.869
Without 4 outliers, with EVT 0.283 0.354 0.551 0.335 0.442 0.763
Without 5 outliers, with EVT 0.230 0.271 0.367 0.258 0.312 0.461

observed in four weeks out of a sample of 194, and assuming that the weekly probability
of observing one or more outliers is independent across weeks, we may assume that the
weekly process is Poisson with mean λ = 4/194 = 0.02.

In a full analysis, we would generate our simulated weekly samples by first using i.i.d.
Poisson draws to determine whether the week is an outlier or a regular week, and then
drawing from the appropriate distribution conditional on that draw. For the current back
of the envelope calculation, we may assume that we draw exactly one outlier week in a
year (4×52/194 = 1.072 ≈ 1). To simulate a distribution of outlier severity conditional on
occurrence, we cannot rely on observed data alone, due to their very small number. Hence,
we would have to elicit priors from experts and to perform a Bayesian analysis based on
those priors and observed data. For our back of the envelope combination, we may simply
take the largest observed loss in the four observed weeks out of 194 as an underestimate
proxy for the high percentile that we would use in calculating overall VaR (the high per-
centile will usually fall outside the support of observed data). Scaling our largest week’s
total loss by the same factor that we have used in this paper, we get $133.9 million, which
would bring the overall VaR value to $684 million, which is of the order of magnitude that
we would expect, given our use of an underestimate of an extreme tail percentile using an
observed datum. Of course, in the full analysis, we would also simulate the outliers by event
type, allowing for various types of correlations as elicited from experts, and extrapolating
beyond the sample using estimated tail distribution parameters. However, for the purposes
of this paper, the back-of-the-envolope calculation in this subsection illustrates the order
of magnitude addition to the capital charge that we would expect, once we integrate a
Bayesian-scenario analysis of outliers with the rest of our statistical analysis.

4.5 Summary of Results

The results in Table 4 provide us with a clear prescription: Ignoring EVT analysis entirely
would produce erroneously low capital charges, while using EVT indiscriminately would
produce excessively large ones. The correct approach appears to be using EVT judiciously;
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Histogram of Simulated Annual Losses with VaR
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Figure 21: The Bottom Line: Lognormal Bodies, GPD Tails, & Excluded Outliers

only if dictated by the likelihood function, and only after extremely large and rare outliers
are excluded. The capital charge obtained from that analysis must then be complemented
with a probabilistic scenario analysis for outliers.

One final analysis must be conducted before we conclude the paper. Some banks
have argued that allowing for less-than-perfect correlations between loss types, as we have
done in our analysis, can result in “diversification effects” that are as high as 20–70%.
This diversification effect is the difference between the estimated capital charge assuming
perfect correlation between event types (i.e. adding up the 99.9th percentiles for each loss
type to obtain the capital charge), as opposed to using simulations with estimated copula
based on Spearman correlation coefficients.

In Table 5, we report the VaR values that we would have obtained in Table 4 had
we assumed perfect correlation. The range of diversification effects suggested by our cal-
culations is 0.5–10.7%. This number may become higher once we allow for diversification
effects across rare but extreme outliers, but remains unlikely to reach the range above 20%.
Hence, our analysis suggests that regulators should be receptive to the idea of diversifi-
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cation effects reducing the required capital charge, but should remain skeptical regarding
unreasonably large estimates of those effects.

Table 5: VaRs assuming perfect correlation + Diversification Effect for VaR99.9%

Model VaR95% VaR99% VaR99.9% diversification effect
All data, lognormal only 0.173 0.225 0.362 10.7%

All data, with EVT 2.783 6.859 28.535 0.5%
Without 3 outliers, with EVT 0.492 0.752 1.761 2.3%
Without 4 outliers, with EVT 0.293 0.372 0.590 7.1%
Without 5 outliers, with EVT 0.240 0.289 0.399 8.9%

5 Concluding Remarks

Despite the Basel Committee’s explicit emphasis on conducting operational risk quantifica-
tion and management analysis at the most appropriately disaggregated level possible, most
banks have been pooling all operational losses and calculating capital charges based on uni-
variate estimation of the loss distribution. Alternatively, some other banks have argued for
“diversification benefits,” seeking to reduce their operational risk capital charges based on
ad hoc assumptions about correlations between different types of operational losses.

In this regard, [17] reported that:

Most of the AMA framework institutions adjusted their AMA capital for diver-
sification. About half of the institutions stated their correlation assumptions,
while some estimated only one loss distribution at the firm-wide level, thus
implying a zero correlation assumption. Institutions did not provide empirical
support for their chosen diversification/correlation assumptions, as correlation
assumptions relied primarily on expert judgment. Potentially, these correla-
tion/diversification assumptions could have a significant impact in the risk ex-
posure calculations.

In this paper, we have proposed a sophisticated and yet easy-to-implement approach
to utilizing state-of-the-art risk-estimation methodologies utilizing maximum likelihood
copula estimation. Together with careful univariate maximum likelihood estimation, and
allowing for judicious use of extreme value theory methods where appropriate, we have
shown how “diversification benefits” can be estimated coherently. The resulting range of
those benefits (as percentages of the capital charge equal to value at risk at the 99.9%
level) is significant, but smaller than the range commonly proposed by banks.

Our multivariate statistical approach follows the spirit of the Basel II Accord by divid-
ing observed losses in each category into regular losses, extreme losses, and outliers. The
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maximum likelihood approach to estimating univariate distributions for regular and ex-
treme losses (where appropriate), as well as copula for modeling the dependence structure
for those losses, easily scales to larger numbers of loss categories within the operational risk
framework, and can potentially be extended to modeling credit and market risks. In other
words, the general approach is sufficiently flexible to consider “diversification benefits” not
only within operational risk categories, but also between operational risk and other forms
of banking risk.

Moreover, the likelihood-based approach lends itself easily to Bayesian analysis (impos-
ing prior distributions on model parameters and using the maximum likelihood estimates
to seed efficient Gibbs sampling). In turn, this makes it easy to integrate this analysis with
probabilistic scenario analyses of very rare and very large losses, as proposed for example
by [15, 16]. Eventually, integrating those methods can assist in building a coherent and
comprehensive statistical model for bank risk quantification and management.
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Table 6: Synchronizing Operational Losses: Illustration of Aggregation of Losses for ET4
and ET7

Days ET4 ET7 Weeks ET4 ET7
d1 n.a. L71 w1 AL41 AL71

d2 n.a. L72,1,L72,2 w2 AL42 AL72

. . . . . .
dk L4k L7k wk AL4k AL7k

. . . . . .
d365 n.a. L7n w52 AL4n AL7n

Table 7: Number of excesses used in EVT analysis when threshold estimated by MLE

ETs All Data Without 3 Outliers Without 4 Outliers Without 5 Outliers
ET2 157 154 154 153
ET4 32 41 40 39
ET7 141 139 128 137
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